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INTRODUCTION

We report the results of a quantuim Monte Carlo simulation of a double-well chain.
This chnin is a system of particles that move on a lattice of symmetric, double-well
potentinls which are coupled harmonically to one another. The physical properties
of this system are invarinnt, like those of the the Ising model, under the symmetry
operations of the Zg group. In this case, changing the sign of the displacement
variables leaves the energy unchanged and leads to a doubly-degenerate ground-state,
Classically, this symmetry is nlways broken, and the particles all sit in the left- or
the right-hand side of their wells. Quantumn mechanieally, however, we find that
below n critical value of the double-well coupling constant the symmetry is restored
by quantum Huctuations.

Our interest in this model was motivated by a series of quantum Monte Carlo
simulntions we are performing on one dimensional models of conducting polymers
and syuthetic metals. The properties of these materinls are deseribed by asystem of
interncting clectrons coupled to a system of phonons. Several years ago, for sumlar
models, Fradkin and Hirseh! investigated. v the electron motion enn generate nn
effective double-well potentinl for the pho .ons and thereby eanse the Iattice to dimer
ize. They also argued, based on continm i renormalization group considerntions and
quantum Monte Carlo simulations, thac for certain models quantum Huctuations at
low temperntures restore symmetry (i destroy the dimerization) . We were at
tracted to the quantum double well chain beeause it is a simpler problem than the
electron phonon models on which to test new numegieal methods nud to stvdy simmlar
14SUeN,

The model, however, is also interesting on its own. It s n diseretized version
of n 14 1 dimensional quantunm @4 field theory, Although considernble numenieal
work hias been done for these maodels in higher dimensions, little has heen done for
one spatinl dimension.  Aualytieally, some interesting results are known abont the
continmum version of the one dimensional model. 2 For instanee, kinkZante hink panes



are the elementary excitations above the ground state. One of onur objectives was ro
learn more about the nature and consequence of these excitations.

The model is also relevant to the study of the structural properties of such
hydrogen-bonded materials as the hydrogen halides.3 In many cases, the energy as
a function of lattice spacing for these chain-like materials has been obtained by lo-
cal density approximation calculations of their electronic strucrure and fitted to rhe
physical parameters in the double-well chain. Thus, with the phase diagram of the
model, we can suggest whether these marerials exist in the broken symumetry phase.

MODEL HAMILTONIAN

The Hamiltonian we are considering is

of (1)
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where on and 75 are the coordinate and momentum operators of a particle with mass

m on n® site of a chain of length V. At each site, the particle moves within a potential
wall whose harmonic and anharmonie parts are characterized by the constants & and
¢. These wells are coupled to their nearest neighbors with coupling strength w. The
constants m, w, k. and g are all non-negative, and the bracketing colons denote normal
ordering of the quantum operators. Periodic boundary conditions are assumed. We
also assumed that the quantum fuctuations do not cause the neighboring particles to
interchange and that the lattice structure does not melt,

The first two terms on the right -hand side of (1) are those of a harmonice oseillator

whose quantum of energy is hw = h \/u'/m. Che remaining two terms are those for the
symmetric, on-site double-well potentials. These potentials have two absolute minima
displaced +£4y/k/g relative to each lattice site and have an energy barrier Ey - k2 1y
between these minime. Using the energy quantum, the harmonie frequeney, and the
displaced distance of minima to seale energies, time, and lengths, we rewrite (1) 1
the following dimensionless form

N
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where ¢ = 4Ep/hw aad v - w/k, ard o constant term has been added. Inool),

the parameter 7 measures the relative strengths of Jhie on wite part of the harome
potential to the harmonice purt implicit in the donble well, In (2.t is the harmome
frequency Q2 associnted with the coupling of the double wells,

We will enleulate the ground state properties of (2) by doing quantum Monte
Carlo simulations at sneeessively lower nnd lower temperatures, The formalism on
which the simulations are based requires the partition function of the model i terms
of the Feymmnn path integrnl. Y8 In general,
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where S{} is the action awsociated with the sealar field a0 Tn terms of ¢ we find
that )
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where 7 is the imaginary-time variable and .3 is the inverse of the temperature T

An implicit parameter in (1) is the lattice constant a. If we let o vanish while
keeping wa constant, we can show that in the ground srate (3 — oo)

o o do\? 1[00\% 1
S{o) = e it (= ol -1)2
{o} e,/_ d:/o dt (Or) +5 (O.r) + e 1)] (4)

This expression is the continuum version of the o4 ficld theory we are investigating,.
If treated classically, this field theory has the well known ground states of 0 = +1
with energy Eg = 0 and has soliton solutions representing excitations from the ground
state. If treated quantum mechanically, the ground state properties are renormalized.
The lowest order correction (at the one-loop level) has been calenlated 2 and in this
approximation
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Eg becomes negative, then the broken symmetry ground state is unstable to the
formation of kink /anti-kink pairs. This instability is an indication of the restoration of
symmetry. We will find that the above estimate, while not very useful quantitatively,
does point to the correet physical picture.

NUMERICAL METHODS

For the simulations, we diseretize the integration in imnginary time into L steps
of size A defined by LA = J and express the action S{o} in terms of variable oy ;.

LN 2
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Here, the subseripts i and j are the labels for the imaginary time and space dimensions.

Formally. this action is similar to the diserete, classienl. two dimensional ot
system. 37 In the present ease, however, to insure we are deseribing quantim be
havior. we have to require A to be much smaller than the reciproenl of §2. In contrast

to the classienl ¢4 system, this requirement poses an extreme anisotropic nature on
the problem. It also makes mensurements of quantum quantities, such as the energy,
specific hent, ete., different from those of their classienl counterparts. We will now
deseribe how we performed the simulations and how we mnde our measurements,

Hybrid Monte Carlo Algorithm

The conventional, path iategenl Monte Carlo procedure evaluates the expeetation
value of o physical quantity 4 A{a},

o BS5{é}
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by generating a sequence ¢ of independent configuration of the o fields with wewht
¢ l'-*'/z. The procedure reduces the compatation of the expectation values to the

simple summation
M

(Y g



where M is the number of independens contigurations generated.

With the commonly-u: od Metropolis algorithm. the configurations are generated
by making local, trial changes of o-ficlds. thereby changing the action from S{o}
to S{2'}, and then deciding to accept or reject the proposed configuration with the
probability of min(1, %5 ) where 4§ = S{o'} - S{o}. This movement of the oy, is dif-
fusive, and strong correlations can exist between consecutive configurations. Related
simulation methods based on Lanegvin or molecular dynamies motions are also nsed,
but often they share similar difficulties in efficiently generating independent configu-
rations. Hybrid methods, which combine two or more different simulation methods.
can greatly reduce this problem. In our simulations. we used the Hybrid Method
proposed by Duane et al®

In the Hybrid Method, a fictitious time { is added to the problem to allow the o; ;

to evolve globally. Instead of the particles drifting in the phase space by diffusicn,
fictitious momenta (usually called pseudo-momenta) are introduced to guide their
motion. The equations of motion are given by the Hamilton-Jacobi equations derived
from the pseudo-Hamiltonian Hp. In our case, we assign each o j a pseudo-mass .
such that the pseudo-Hamiltonian of the new system can be written as

2
Pij
Holorh = Y- 22+ 500)
W

The partition function of this system is

Zp = / H do; jdp; e -Hy{¢.p}
)
and sinee integrand for the p; ; integration is Gaussian, the integration ean be earried
out ensily to give to Zp = (2 WL/2Z Thus. the pseudo. partition funetion Zp ditfers

from the true partition function Z only by a multiplicative constant so the physical
observables will have the same expectation values as in the original system.

In our simulations, we first generate a Gaussian distribution for momentum p, ;.
and then let we let o, ; and p;; evolve in a fictitious time ¢ ender the following
cquations of motion

ddij _ Pig
dt J
dp; ; Y,
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This propagation should he energy conserving, but after the system hing evolved for
a while in ¢ with time step 87, the energy will begin to deviate from its <inctig
value beenuse of the numerieal ervors in the integration procedure. We <top the
evolution and then enlenlnte the difference hetween the current nnd mitinl energies,
Mp{o}  Hp{e'} - Hp{o}. nud necept the new configurntion of the o ficlds necording,
to Metropolis Algorithm, i.e., accept with n probability of ming 1. ¢ bHy ) I'his step
removes the cumulative ervors that arise from the nnmerieal integration heeaee of
the finite size of the ntegration step We eatry ont this procedure repeatedly annl
the statistical errors of the measured quantities are as small as requined

Beennse of the integration error s removed by the Metvopohs step, the amiple
leap frog algorithin®? is more than adequante for evolving, the configimntions of the



0§ ;- This algorithm evolves the syster) with acenriey secoted onder in of, with the
same computational efficiency as tirst order integrations.  Since we can allow the
®4,j to drift far away from from their svarting configuration, thi= method also has
the advantage of reducing correlations among consecutive measurements. Becanse
of parallel nature of the equaticns of motion, the hybrid method is very efficient on
parallel (and vector) computers. This efficiecacy allows us to study long chains m low
temperatures.

Measurements

To study whether the symmetry of the ground -tate is broken. we adopt the
following strategy: for successively lower values of the temperature T, we study the
behavior of the order parameter, the energy, and their riean-squared Huctuations as a
function of € and v. In terms of the discretized action (7). we define a “quasi” inverse
temperature Jg = ¢ and a “quasi™ {classical) two-dimensional Hamiltonian

R QY A
Hqe = Z [g(d’m.j = 20l + 500541 = 00,) + (o] - 1) (8)
W]

such that JdgHq{0} = S{0}. At each value of the physical temperature. we fix 5 and
then wie standard methods to study the energy, specific heat. and their mean-squared
fluctuations to determine whether the system defined by Hq undergoes a transition
from the broken to the restored symmetry state at some critical value of Jg+ ige = €.

Within this strategy, finding the condition for the hroken symmetry at a fixed
physical temperature for our one-dimensional quantum model is equivalent to finding
the eritical inverse quasi-tempernture e for the two-dimensional Hamiltoninn Hq. In
the absence of infinite-ranged interactions, however. a true phase transition in one-
dimension ean only oceur for an infinite-sized system at zero temperature (i.e. for
NV and L — oo). Within our strategy. we search for a phase transition in a two
dimensional system whose inverse temperature is €. Again, a true teansition will only
oceur in an infinite system (i, for .V - 00), but it ean oceur at a hinite value of
iverse quasi-tempernture . We scek to determine if such n teansition is indieated
and if these indications remain as we inerense L and V. What will distinguish ow
quantum simulations from those for the classical system Hg is the need to require that
the physical quantities we compute to be independent of .1 to within the aceuracy of
our caleulation.

In our simulations, we chose L = NV or L = 2V, These choices were a compromised
conces, jon to the intuitive and empirieal faet that high aspeet ratio reetangular space
time lnttices whibit efficient propagation of the ¢; ; configurations. As we lower the
temperature, we also reduce hnite-size effects by making L inerensingly lnger.

Order Parameter and Susceptibihty. A eriterion for the symumetry state of the
system iy the expectation wnlue of ¢ - }_:"’3" dij - Sinee only fivite sized systems
can be simulated, this definition of an order paenmeter will change its sign ns the
<imulation progresses and in genernl avernges to zero independent of whether the
;round state exhibits broken synunnetry or not. Thus, as an indieator of the symmetry

wtate of the system, we take for the order parameter

1
e [ 9
s e T

Ax the size of the system NV becomes very lnrge and the trae temperatare 10 1 A\
appronches zero, the value of the order parnneter will change from s finite poanv
vilue to zeroaf quantum fluetuations are 1estoring the syinmetry.

Althongh the order paenmeter X (o) gives diteet evidenee of the quantum m
metry, sunply mensuring it is not alwavs o very necurate way of findimy, the eneal



value . For determining a eritical value, the saxeeptibiliry is move neetl sinee ir will
diverge near €. This susceptibility is detined as

\(€) = NL(#%) ~ (|8])?) (10)

' Energy and Specific Heal. The expectation value (§{o}) is not a meaningful
estimator for the cnergy E{ J) of the quantum system, since it diverges as X — 0.
The difficulty lies in using

[\.q(f) T(QH-I,J oi,j )2

)_\ o
¥

as an estimator for the kinetic energy.4¥ To estimate the kinetic energy A(.3) of

the quantnm system correctly, we used the lllowing estimator based on the Virial
Principle’

I\-(:i) = %('DV'{O})

where in the present case
‘e Y 1
Vio} = AZ [r,'('-"i.j-H - ‘-":‘.j)z + 3("?-1' - 12 (11
Wt

Hence, E(3) = K(3) + V(:3) where V(.9) is given by (11). The specific heat C(.7) for
the quantum system is simply

C(3) = JA(E?) - (E()?) (12)

To find ec, 071 che other hand, we take Eg(€) = (Hq) and

Cole) = e2((Eq(e)?) - (Eqlen)?) (13)

It is important to note that a divergence of Cg(¢) does not necessarily unply di-
vergent behavior in actual energy E(:9) or the speatic heat C(.3). The actual and
quasi energies are computed differently. This difference again underscores the intnn
sic difference between a two-dimensional classienl system and a0 1+ 1 ditnensional
quantum system, despite of their formal similarity.

RESULTS
We sitelated n vnric'ty of system sizes, ranging from .V 7 (3 - 4950 to N
128 (13 = 45.25). The N = 128 ealenlntions were done on a Thinking \lm hmc's N\ 2

computer, ‘The n-mmmh-r were done on a Sun Sparestation 1, a Convex 230, aud
a Crny X MP. The Cray computer ran our progeams abont uap to 20 times faster
than the Sun computer and nbont twice ns fast ax the Convex computer. The Cray
computer was, however, at lenst 10 times slower, and sometimes 20 times slower,
than the Thinking Machines computer. The speed of the Intter provided s the
opportunity to simulate efficiently a ratber Inrge system nt a very low temperature,
The simulations on the CAM 2 taok abont 65 mintes of camputation time for 10.000
wensurements and about 120 minntes for 80,000,

We found that A satisfying A = } wis sullich nt to reduee the N dependence of
onr results to within our stntistienl error. This choice is a comprise hetween the need
to tinve LY smnll to be in the quantum regime, at the cost of ineveased compntation



time. and to have A sutficiently Large 1o control compuration tune. ot the sk of bemge
in the classical regime.

For the pseudo-time-step At, we typically chose ##Q = 3.5. With this choice our
Monte Carlo acceptance rate was 90% to 95%. This rate seemed reasonable. In the
Hybrid Method. one of the things that we are tryving ro achieved is a global updaring
of the configurational variables oy j. We accomplish this by integrating the equations
of motion and using the Monte Carlo step to eliminate the need to monitor and adjust
the integration step size &¢. The idea is to choose this step-size to keep things close
and to use the Metropolis algorithm to cull our cases that deviate a hit too far from
the initial energy. The average. absolute value of the relative deviation from energy
conservation was approximately 1.3 x 1074,

‘To promote decorrelated measured values. we usually made measurements after
every second Monte Carlo step. For the smaller chain lengths, we made 20 000 mea-
surements, while for the larger ones, 100.000 measurements. The measurements were
grouped into bins. and the average of each bin was compiited. The desired expecta-
tion values were the average of the bin averages. OQur error estimates were based on

the sample estimate of the variance of the bin averages.1?

To estimate ee. we nsed the Cumulant Intersection Method 81911 Here, one com-
[)llu‘ﬁ

Un=1- .&24_)N_
3(e?) v

for each chain length (and hence T) as a function of the inverse quasi-temperature
e. This quaatity measures the size of the system relative to the coherence length €.
To find €e. one plots the ratio R(¢) = Up:/Up for various pairs of lattice sizes as a
function of e. At the critical point. R(ec) = 1. Accordingly. e¢ is found by searching
for the point of common intersection of the curves . Sinee the point of interiection
is independent of system size, this method returns an estimate for e extrapolated to
the thermodynamie limit and to zero temperature.

(14

In practice. the curves never intersect precisely at a point and care nust be taken
in interpolation between measure vnlues of B(e). To reduce the computarion time near
the eritical point, we used the Histogram Method of Ferrenberg and Swendsen. 12 In
this method, at a given inverse quasi-temperature ¢ (and actual inverse temperature
J), one colleets a histogram of the measured values of the energy to construet an
estitnate of the density of states pl E') and the dependence of o on E. With these, one
then estimates the moments of o E') ns a function of ¢ by using,

(™) [t Eyo EVtele VEYE
'D ’ N ....--.. - " 5y -
N T EN B
and then obtains (14) and henee Rie) for the different pairs of N oand V' Thae
estimnte for (14) is aceurate in a narrow region around ¢, but this regon s wide
enough so that the overlap of ¢ dependence from adjneent values of ¢ will allow a
smooth aceurnte curve for Rie) to be produeed with fewer simulations than needed
to compute the snme curve with another sequence of necessarily more closely spaced
! vnlues,

Our principal result is shown in Fig. 1 where we plot the phase diagram as a
function of the model parameters e and 1/~ The strmght hine with a slope of ap
proximately 2 is the phase boundary estunated from the continnnm theary resntes of
(5) and (6). It predicts the existence of a restored svimmetry phase above thes hine
I'he markers in this igure are the resalts from the quantum Monte Catlo sianiation
Ahove the curve represented by these pomts lies the restored symmetey phase W
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Fig. 1. The phase diagramn. The straight line is the phase boundary predicted
from the perturbation analysis of the continuum llinit; the makers are the
results obtained from the simulations. The restored symmetry phase lies above
the curve represented by these markers.
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Fig. 2. The order parnmeter as a function of e for different system sizes, Its
value for a classical system is unity. The down-ward arrow marks e = (.82
Here. y = ..

see that the continuum theory qualitatively prediets the correet physies. but quanti
tatively the the transition actually ocenrs more easily.

The behavior of the order parnmeter from different chain lengths as a funetion of
¢ is shown in Fig. 2. Out normalizations nre such that the classienal valne of X(er is
nnity, independent of size and ¢, From this figure, we see that quantum effects always
reduee the order parameter relative to the classical valne and that above an ¢ = (.82
the symmetry is broken. Clearly. as .V (snd henee d becomes lnrge) the quantum

order parameter curves are tending toward a detinite value of eq.

The susceptibility (10) for different chain lengths as a function of ¢ is shown in
Fig. 3. As .V increnses, the peak in y(¢) is clearly diverging aronnd the same value
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Fig. 3. The susceptibility \(¢) as & function of ¢ for different sizes. v = 2.
The peak in (€) occurs at approximately the same value of ¢ at which the
order parameter, shown in Fig. 2. is vanishing.
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Fig. 4. The specific heat Cp(¢) times the temperature T squared as a function
of ¢ for different system sizes. The approximate universality of the curve for
different system sizes suggests that specific heat critical exponent o is around
2. The down-ward arrow marks ec = (0.82. v =2,

of ¢ (= 0.82) ai which the order parameter was disappenring in Fig. 2. On the other
hand, in Fig. 1, we plotted T2 times the specific heat Co(e) (13) as a function e,
and we see an absence of a peak and any size dependence in the results. These
observations suggest that the specific heat critical exnonent « is approximately 2.
This is an unusual finding. For narrow deep wells, as found in simulations of the
isotropic, two-dimensionnl. classical version of n diserete of theory, this exponent is
[sing-like. i.e., approximately zero, plus log corrections, while in the other extreme of
shallow broad wells, the exponent seems to be mean-tield-like with a value of 1.97 Iy
one-dimension, the specific heat of the Ising model vanishes exponentially as 70« )



and a = ; for mean-field taeory. 13

CONCLUDING REMARKS

We have preseated numerical evidence that quantum fluctuations can produce
a symmetric ground-state in the double-well chain. restoring the symmetry that .s
broken classically. We presented the phase diagram for this model rhat shows the
symmetry restoration occurs more easily than predicted by a perturbation theory
calculation of the continuum limit of the model. In anorher paper will report the full

details of our analysis and resules. 14

The suggestion from our numerical results on the specifie heat thar the phase
transition from the restored symmetry state to the broken one does not lie in the
Ising or Gaussian universality classes as suggested for the classical model perhaps
should not be surprising.!® We are currently trying to determine the universality
class for the model by a combination of standard finite-size scaling methods!? and
more novel conformal-charge methods.18:17
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